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Wang and Landau proposed recently, a simple and flexible non-Boltzmann Monte Carlo method for esti-
mating the density of states, from which the macroscopic properties of a closed system can be calculated. They
demonstrated their algorithm by considering systems with discrete energy spectrum. We find that the Wang-
Landau algorithm does not perform well when the system has continuous energy spectrum. We propose in this
paper modifications to the algorithm and demonstrate their performance on a lattice model of liquid crystalline
system �with Lebwohl-Lasher interaction having continuously varying energy�, exhibiting transition from high
temperature isotropic to low temperature nematic phase.
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I. INTRODUCTION

Monte Carlo methods have emerged as a powerful and
reliable tool for simulating several complex phenomena in
statistical physics, see, e.g., Refs. �1,2�. The Metropolis al-
gorithm �3� discovered in the middle of the last century can
be considered as the starting point. This algorithm generates
a Markov chain, the asymptotic part of which contains mi-
crostates belonging to a canonical ensemble at a temperature
chosen for the simulation. Expectation value of a macro-
scopic property can be estimated by taking a simple arith-
metic average over a Monte Carlo sample. The associated
statistical error is inversely proportional to the square root of
the sample size. Thus, in principle, we can estimate a physi-
cal property to the desired accuracy by simply increasing the
sample size. However, if successive microstates in the
sampled Markov chain are correlated, the statistical error in-
creases by a factor �1+2��, see, e.g., Ref. �4�, where �� is
the integrated correlation time. Such a situation occurs when
we simulate a system close to criticality.

The Metropolis algorithm and its several variants like
Glauber �5�, heat-bath �6�, and Kawasaki exchange �7� algo-
rithms come under the class of Boltzmann sampling tech-
niques. The limitations of Boltzmann sampling have long
since been recognized. For example, it cannot address satis-
factorily problems of critical slowing down, i.e., divergence
of �� with increase of system size, near continuous phase
transition. Cluster algorithms �8� overcome this problem.
Boltzmann sampling is also not suitable for problems of su-
per critical slowing down near first order phase transitions.
The microstates representing the interface between ordered
and disordered phases have intrinsically low probability of
occurrence in a closed system and hence are scarcely
sampled; switching from one phase to the other takes a very
long time due to the presence of high energy barriers when
the system size is large; as a result the relative free energies
of ordered and disordered phases cannot be easily and accu-
rately determined. Finally it is quite difficult to estimate the
absolute values of entropy or free energies in Boltzmann
sampling techniques.

A. Non-Boltzmann sampling

That non-Boltzmann sampling can provide a legitimate
and often superior alternative to Boltzmann sampling was
recognized even during the early days of Monte Carlo prac-
tice, see, e.g., Ref. �9�. However, the practical convenience
and significance of non-Boltzmann sampling was appreci-
ated only in the middle of the 1970s when Torrie and Valleau
�10� proposed the so-called umbrella sampling; this is a fore-
runner to all the subsequent non-Boltzmann sampling tech-
niques including the multicanonical Monte Carlo �11� and its
several and recent variants. Entropic sampling �12�, equiva-
lent to multicanonical sampling �11�, provides a transparent
and intuitively appealing insight into non-Boltzmann Monte
Carlo techniques. It is based on the following premise.

The probability that a closed system can be found in a
microstate C is given by

P�C� = �Z����−1 exp�− �E�C�� . �1�

In the above E�C� is the energy of the microstate C and �
= �kBT�−1, where kB is the Boltzmann constant and T is the
temperature. Z��� is the canonical partition function given by

Z��� = �
C

exp�− �E�C�� =� D�E�exp�− �E�dE ,

where D�E� is the density of states. The probability density
for a closed system to have an energy E is thus given by

PB�E� � D�E�exp�− �E� , �2�

where the suffix B indicates that it is the Boltzmann-Gibbs
distribution �appropriate for modeling a closed system�. Let
us suppose we want to sample microstates in such a way that
the resultant probability density of energy is given by

Pg�E� � D�E��g�E��−1, �3�

where g�E� is chosen as per the desired non-Boltzmann dis-
tribution. Once Pg�E� is known, an ensemble consistent with
Eq. �3� can be constructed as follows.
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Let Ci be the current microstate and Ct the trial microstate
obtained from Ci by making a local change, e.g., flip a ran-
domly chosen spin in Ising model simulation. Let Ei=E�Ci�
and Et=E�Ct� denote the energy of the current and of the
trial microstate, respectively. The next entry Ci+1 in the Mar-
kov chain is taken as

Ci+1 = �Ct with probability p ,

Ci with probability �1 − p� ,
	 �4�

where the acceptance probability p is given by

p = min
1,
Pg�Et�
Pg�Ei�

� � min
1,
g�Ei�
g�Et�

� . �5�

We call this non-Boltzmann sampling with respect to a given
g�E�. It is easily verified that the above acceptance rule
obeys detailed balance. Hence the Markov chain constructed
would converge asymptotically to the desired g ensemble.

When �g�E��−1=exp�−�E� we recover conventional Bolt-
zmann sampling, implemented in the Metropolis algorithm.
For any other choice of g�E� we get the corresponding non-
Boltzmann sampling. Now, canonical ensemble average of a
macroscopic property O�C� can be obtained by unweighting
and reweighting of O�C� for each C sampled from the g
ensemble. For unweighting we divide by �g(E�C�)�−1 and for
reweighting we multiply by exp�−�E�C��. The weight factor
associated with a microstate C belonging to the g ensemble
is thus,

W�C,�� = g„E�C�…exp�− �E�C�� . �6�

We then have

O� =

�
C

O�C�W�C,��

�
C

W�C,��
. �7�

The left-hand side of the above is the equilibrium value of O
in a closed system at �, while on the right-hand side the
summation in the numerator and in the denominator runs
over microstates belonging to the non-Boltzmann g en-
semble. It is also clear that from a single simulation of a g
ensemble, we can calculate the canonical average of O at
various temperatures.

B. Entropic sampling

Entropic sampling obtains when g�E�=D�E�. This choice
of g�E� renders Pg�E� the same for all E, see Eq. �3�. The
system does a simple random walk on a one-dimensional
energy space. Hence all energy regions are visited with equal
probability. As a result, in the case of first order phase tran-
sition for example, the microstates on the paths �in the con-
figurational space� that connect ordered and disordered
phases would get equally sampled. A crucial issue that re-
mains to be clarified pertains to the observation that we do
not know D�E� a priori.

In entropic sampling we employ a strategy to push g�E�
closer and closer to D�E�, iteratively. We divide the range of

energy into a large number of bins of equal widths. We de-
note the discrete-energy version of g�E� by the symbol
�gi : i=1,ME�, where ME is the number of energy bins. We
start with �gi

�0�=1 ∀ i=1,ME�; the superscript is iteration
run index and the subscript is energy bin index. The aim is to
update �gi� from one iteration to the next, �gi

�0��→ �gi
�1��

→¯ �gi
�k��→¯ , so that asymptotically we get �gi� as close

to �Di� as desired, where �Di� is the discrete energy represen-
tation of D�E�. The iteration is carried out as follows. In
the kth iteration, for example, we generate a large number of
microstates employing acceptance probability based on
�gi

�k��, see Eq. �5�, and accumulate a histogram �hi : i
=1,ME� of energy of visited microstates. We update �gi

�k� : i
=1,ME� to �gi

�k+1� : i=1,M�, as given below,

gi
�k+1� = �gi

�k� if hi = 0,

gi
�k� � hi if hi � 0,

	 �8�

for all i=1, 2, …, ME. The updated �gi
�k+1�� is employed in

the next, i.e., �k+1�th run, during which a fresh histogram of
energy is generated. After each run, the histogram is exam-
ined for its uniformity. Flatter the histogram, closer is �gi� to
�Di�. Thus, the calculated histogram serves two purposes in
entropic sampling, one for updating �gi� and the other for
monitoring the convergence of �gi� to �Di�. However, often,
it is neither practical nor necessary to get a strictly flat his-
togram; an approximately flat histogram would be adequate,
thanks to the unweighting followed by reweighting with the
Boltzmann rule while calculating the averages, see Eqs. �6�
and �7�. Hence the calculated macroscopic properties would
come out right, even if �gi� does not converge strictly to �Di�.

C. Wang-Landau algorithm

A simple and flexible variant to entropic sampling was
proposed recently by Wang and Landau �13�. The distin-
guishing feature of this algorithm is the dynamic evolution of
the acceptance probability, p; we update �gi� after every
Monte Carlo step. Let us say the system visits a microstate in
a Monte Carlo step and let the energy of the visited mi-
crostate fall in the mth energy bin; then gm is updated to f
�gm, where f is the Wang-Landau factor, see below. The
updated �gi� becomes operative immediately for determining
the acceptance or rejection criteria from the very next trial
move. We set f = f0 for the zeroth run; f0 can be any number
greater than unity; the choice of f0=e has been originally
recommended by Wang and Landau. We generate a large
number of microstates employing the dynamically evolving
p. At the end of a run we calculate the histogram of energy of
microstates visited by the system during the run. Because of
the continuous updating of p, the energy span of the density
of states increases significantly and the energy histogram
serves to monitor the convergence of �gi� to �Di�. A run
should be long enough to facilitate the system to span the
energy over the desired range and to render the histogram of
energy approximately flat. At the end of, say, the �th run, the
Wang-Landau factor for the next run is set as f = f�+1=�f�.
After several runs, this factor would be very close to unity;
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this implies that there would occur no significant change in
�gi� during later runs. For example, with the square-root rule
and f0=e, we have f25=exp�2−25��1+10−7. It is clear that f
decreases monotonically with increase of the run index and
reaches unity asymptotically. Wang and Landau have recom-
mended the square-root rule �13�; any other rule consistent
with the above properties of monotonicity and asymptotic
convergence to unity should do equally well.

From the converged g, the desired macroscopic properties
of the system can be calculated; to this end we invoke the
connection between the density of states and microcanonical
entropy, ��E�=kB log D�E�. Thus the Monte Carlo estimate
of microcanonical entropy is kB log g�E�. For implementing
such a scheme we need to normalize g�E�. The normalization
constant should be obtained from known properties of the
system. For example, in the Ising model, the ground state is
doubly degenerate, D�Emin�=2. The total number of mi-
crostates equals 2V where V is the number of Ising spins in
the Monte Carlo model, �Emin

EmaxD�E�dE=2V. Either of these
known information can be employed for normalizing g. The
normalized g�E� provides a good approximation to D�E�.

Alternately, we can take the output �gi� from the above
and carry out a single long non-Boltzmann sampling run
which generates microstates belonging to the g ensemble.
Note that during the production run we do not update g�E�.
By unweighting and reweighting of the microstates gener-
ated in the production run, we calculate the desired proper-
ties of the system as a function of �. This is the strategy we
shall follow for the simulation of the liquid crystal system,
described in the rest of the paper. In this strategy, we can
employ arbitrary normalization of g; more importantly, it is
adequate if

�a� the system visits the energy region of interest and
not necessarily the entire range and

�b� the histogram of energy in the region of interest is
approximately flat.

The usefulness of the Wang-Landau algorithm has been
unambiguously demonstrated for systems with discrete en-
ergy spectrum. Indeed originally the Wang-Landau method
was applied to the Ising model for which the possible ener-
gies are a discrete set of integers. However, when we try to
apply this technique to systems with continuous energy, e.g.,
Lennard-Jones fluid/glass �17–19�, Heisenberg spins �20�,
and protein simulation �21�, there are serious difficulties.
Liquid crystalline materials with continuous energy spectrum
provide such an example. In this paper we report simulation
of a liquid crystalline system focusing attention on nematic-
isotropic transition. The paper is organized as follows. In
Sec. II, we describe a lattice model and Hamiltonian of a
liquid crystal system. We simulated the system with the con-
ventional Wang-Landau algorithm, which implicitly involves
discrete set of energies. Since the liquid crystal molecules are
continuously orientable, the possible energies are real num-
bers. This complicates the estimation of density of states in
the Wang-Landau algorithm. We find that the dynamics be-
comes extremely slow even for moderately large systems.
The system gets stuck in certain regions of the configura-
tional space. This problem appears to be generic to the algo-
rithm when applied to continuous energy systems �17–20�.

Hence we modify the Wang-Landau algorithm and the de-
tails of the simulation are given in Sec. III. The results on
temperature variation of various macroscopic properties of
the system are discussed in Sec. IV. In Sec. V we briefly
summarize the work and highlight its salient features.

II. LATTICE MODEL OF BULK LIQUID CRYSTALS

We consider an L�L�L cubic lattice with each lattice
site holding a three-dimensional unit vector �u�, called a spin.
The elements of the vector are the direction cosines of a spin
in a laboratory frame of reference. A spin represents notion-
ally, a single uniaxial liquid crystal molecule or more realis-
tically a cluster containing typically 100 of them. The spins
are actually headless in the sense the system has head-tail flip
symmetry. Two nearest neighbor spins interact with each
other as per a potential proposed by Lebwohl and Lasher
�LL� �14� which has such a head-tail flip symmetry. The
interaction energy is given by

�i,j = − 1
2 �3 cos2�	i,j� − 1� , �9�

where i and j are nearest neighbor lattice sites. 	i,j is the
angle between the two spins, cos�	i,j�= ui �uj�. The interac-
tion energy of a single nearest neighbor pair of spins ranges
from a minimum of −1, when 	i,j =0, or equivalently
ui �uj�=1, to a maximum of +1/2, when 	i,j =
 /2 or equiva-
lently ui �uj�=0. Total energy of the system in microstate C
is given by

E�C� = �
i,j�

�i,j , �10�

where the sum runs over all distinct nearest neighbor pairs of
lattice sites in the system taking into account the periodic
boundary conditions in all three directions. The total energy
of the system thus varies continuously from a minimum of
−3L3 to a maximum of +3L3 /2. When the system is com-
pletely ordered with all the spins aligned, the energy is mini-
mum and equals −3L3; the energy is zero for an isotropic
�completely disordered� phase. We calculate several macro-
scopic properties of the liquid crystalline system and report
here results which include orientational order parameter S�,
average energy E�, specific heat �at constant volume� CV,
and the Binder’s reduced fourth cumulant of energy V4.

First we employed conventional Wang-Landau algorithm
and carried out Monte Carlo simulation of the lattice model
of the liquid crystalline system. We found that the dynamics
were extremely slow when the system size L is 6 and above.
The calculated density of states g�E� becomes steeper with
increase of Monte Carlo iterations. As a result the system
gets stuck in certain narrow regions. There is practically no
evolution of the calculated density of states g�E�. Increasing
the number of Monte Carlo steps in a Wang-Landau iteration
does not seem to remedy the situation. Instead, sharp peaks
emerge and grow at either ends of g�E�. These problems
appear to be generic to the Wang-Landau algorithm when
applied to continuous energy systems. To overcome them,
we experimented with several modifications �16� of the al-
gorithm and finally arrived at a strategy described in the next
section.
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We remark that need for improving and generalizing the
Wang-Landau algorithm to different kinds of problems has
been recognized. For example, a generalization of Wang-
Landau algorithm to off-lattice simulation can be found in
Ref. �17�. Extension of Wang-Landau algorithm to zero-field
susceptibility calculations in Heisenberg spin model can be
found in Ref. �20�; calculation of density of states of proteins
from the so-called instantaneous configurational temperature
has been employed in the application of Wang-Landau algo-
rithm to protein simulation �21�; etc.

III. MODIFIED WANG-LANDAU MONTE CARLO
SIMULATION OF BULK LIQUID CRYSTAL SYSTEM

Free wheeling spins are placed on the vertices of a three-
dimensional cubic lattice with their orientations sampled ran-
domly and independently. Orientation of a spin is specified
by the polar angle 	 and an azimuthal angle � with respect to
a laboratory fixed three-dimensional coordinate system. We
sample �=cos�	� from a uniform distribution between 0 and
1, and the azimuthal angle � from a uniform distribution
between 0 and 2
. We divide the energy range �−3L3 ,
+1.5L3� into M =9L3 number bins of equal widths E=0.5.
We start with an array �gi=e2∀ i=1,9L3�. Let C0 denote the
initial microstate constructed by placing spins with random
and independent orientations at the lattice sites. Let E�C0�
fall in the �th energy bin. We select randomly a lattice site
and make a random change in the orientation of the spin
residing at that site. We employ Barker’s method �22� to
generate a new trial orientation from the current microstate.
Barker’s method essentially consists of selecting randomly
and with equal probability one of the three Cartesian axes
and rotating the liquid crystal molecule by an angle 	 radi-
ans about this axis. 	 is uniformly distributed between −0.5
and +0.5 radians. Let Ct denote the trial microstate and let its
energy belong to the �th bin. If g��g�, we accept the trial
state and set C1�=Ct; if g��g�, we calculate the ratio p
=g� /g�. We select a random number r �uniformly distributed
between 0 to 1�; if r� p we accept the trial microstate, C1�
=Ct. Otherwise we reject Ct and set C1�=C0. This constitutes
a single move. We continue in the same fashion and get C0

→C1�→C2�¯CL3−1
� →C1. A set of L3 moves constitutes a

Monte Carlo sweep �MCS�. In the first MCS, since gi is the
same for all i, every move gets accepted.

At the end of the MCS, let us say the system is in mi-
crostate C1. Let E�C1� belong to the kth energy bin. We
update gk to f �gk, where f = f0. The updated �gi� becomes
operative for deciding acceptance or rejection in the next L3

moves that constitute the next MCS leading to C2. Thus we
get a chain of microstates C0→C1→¯CN. We take N
=10 000. Generating a Markov chain of length N constitutes
one iteration. For the next iteration we change f to f0.9. The
microstate generated at the end of an iteration forms the ini-
tial microstate for the next. Also the updating of the density
of states is continued from one iteration to the next. We carry
a total of M iterations and this constitutes a Wang-Landau
�WL� run, see below. In the last iteration of a WL run, we
have f = fM = f0

��M�, where ��M�= �0.9�M. We have chosen
M =160 so that fM −1�10−7 for f0=10.

We start a WL run with f reset to f0. The microstate gen-
erated at the end of a WL run is taken as the initial microstate
for the next. Similarly the updated density of states �gi� at the
end of a WL run provides the initial density of states for the
next. We carry out a total of 50 WL runs. The value of f0 is
100 for the first 40, 10 for the next 9, and f0=e for the last
WL run.

The density of states at the end of 50 WL runs is taken as
an input for a long non-Boltzmann sampling run of 2.5 mil-
lion Monte Carlo sweeps, called the production run. Thus we
get a g ensemble of microstates from which the desired mac-
roscopic properties can be calculated by unweighting and
reweighting.

We also found that it is imperative to employ numerical
techniques that avoid overflow problems and the attendant
loss of precision due to truncation. To this end, we adapted
the techniques suggested by Berg �23�. These involve prin-
cipally the following. Let �i=log gi denote the microcanoni-
cal entropy. We define �i=log �i. We carry out all the
calculations in terms of ��i : i=1,2 ,… ,9L3�. We derive ex-
pressions for acceptance probability p in terms of ��i� and
employ them in the simulation. Similarly we derive expres-
sions for the updating of ��i� and for unweighting and re-
weighting, in terms of ��i�. These are briefly described in the
Appendix. Employing this modified Wang-Landau algorithm
we simulated a lattice model of liquid crystalline system with
L=4, 6, 8, 10, and 12 focusing on nematic-isotropic transi-
tion. We present the results in the next section.

IV. CHARACTERISTICS OF BULK LIQUID CRYSTALS

The orientational order parameter S of a microstate is de-
fined as follows. Let �ui� denote the spin at the ith lattice site.
We first construct an average projection operator for a mi-
crostate C given by

A�C� =
1

L3�
i=1

L3

�ui�ui� . �11�

From A we construct a traceless symmetric tensor,

Q�C� = A − 1
3 trace�A� � I , �12�

where I denotes a unit matrix. Let �max�C� denote the largest
eigenvalue of Q. Then S�C�=3�max�C� /2. The corresponding
eigenvector ��max� defines the director for the microstate C.

Figure 1 depicts S� as a function of temperature for sys-
tem sizes L=4, 6, 8, 10, and 12. We observe that the modi-
fied Wang-Landau Monte Carlo simulation predicts correctly
the transition from a high temperature disordered �isotropic�
phase to a low temperature nematic phase. For L=4 the tran-
sition is not sharp, due to finite size effects. However when
we increase the system size, the transition becomes sharper.

Next we investigate the behavior of specific heat at con-
stant volume, CV as a function of temperature. CV is calcu-
lated from energy fluctuations and is given by
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CV =
E2� − E�2

kBT2 . �13�

The results are depicted in Fig. 2. As L increases the CV
profile becomes sharper. Also the temperature TNI�L� at
which the specific heat is maximum, shifts slightly to lower
values, as expected. We find that TNI�L=12� calculated from
the CV is 1.126 and is in good agreement with the earlier
estimates �24,25�. We can estimate the L→� limit of the
transition temperature by finite size scaling discussed later.

The variation of average energy E� with temperature is
depicted in Fig. 3. This quantity decreases with decrease of
temperature. At transition the fall is sharp for large L.

We have calculated Binder’s reduced fourth order cumu-
lant of energy denoted by the symbol V4, see Ref. �15�. It is
given by

V4 = 1 −
E4�

3E2�2 . �14�

The variation of V4 with T is depicted in Fig. 4 for L=4, 6, 8,
10, and 12. Each curve shows a minimum at an effective
transition temperature. As the system size increases the ef-
fective transition temperature shifts to lower values as ex-
pected. Also V4→2/3 for T�TNI for all L considered and
for T�TNI for large L. This is a clear signature of a first
order transition.

Figure 5 depicts microcanonical entropy �=log g versus
E for system size L=12 on a log-linear graph. The results on
entropy after successive WL runs are shown starting from the

FIG. 1. The orientational order parameter S versus temperature
�in units of dimensionless energy, with kB=1� for L=4, 6, 8, 10, and
12. The transition becomes sharper with increase of system size.

FIG. 2. Specific heat CV �measured from fluctuations of dimen-
sionless energy, see Eq. �13�� as a function of temperature �mea-
sured in units of dimensionless energy with kB=1� for L=4, 6, 8,
10, and 12; the transition becomes sharper with increase of system
size; the transition temperature �the value of T at which the curve
peaks� shifts to lower values with increase of system size.

FIG. 3. Average �dimensionless� energy as a function of tem-
perature �measured in units of dimensionless energy with kB=1� for
L=4, 6, 8, 10, and 12, from bottom to top, respectively. The tran-
sition becomes sharper with increase of system size.

FIG. 4. Binder’s fourth order cumulant of energy for L=4, 6, 8,
10, and 12. The behavior is indicative of first order transition.
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inner most curve and ending in the outer most. We see
clearly that the range of energy spanned increases with in-
crease of WL runs. The outer most curve is the output of the
last WL run. The data on ��i : i=1,9L3� obtained at the end of
the last WL run is employed in the long non-Boltzmann sam-
pling run �production run� and a g ensemble of microstates is
generated. All the quantities were calculated by unweighting
and reweighting at temperatures spaced out with a fine reso-
lution of 0.001.

Finally we have presented in Fig. 6 the finite size scaling
of the transition temperature obtained from specific heat, ori-
entational susceptibility, and the fourth order cumulant of
Binder. The orientational susceptibility � is calculated from
the fluctuations of S and is given by

� =
S2� − S�2

kBT
. �15�

The transition temperature is plotted against inverse of the
volume of the system. The three curves scale linearly with
1/L3 and extrapolation �L→�� gives an estimate of the
nematic-isotropic transition temperature. TNI�L=�� esti-
mated from specific heat data is 1.1284, from susceptibility
data is 1.1299 and from the data on Binder’s cumulant is
1.1211. These results are in good agreement with earlier es-
timates �24,25� up to second decimal.

V. CONCLUSIONS

We have demonstrated for the first time the applicability
of the recently proposed Wang-Landau Monte Carlo algo-
rithm to the study of liquid crystalline systems with continu-
ous energy spectrum. We have made use of the flexibility of

the algorithm and studied nematic-isotropic transition in a
three-dimensional lattice model of bulk liquid crystals. We
have employed the Lebwohl-Lasher potential that has the
head-tail flip symmetry of the nematic director and in which
the energy varies continuously. For even moderately large
system Wang-Landau dynamics becomes unacceptably slow.
The density of states function g�E� gets confined to a narrow
energy range and becomes steep. As a result, the system
spans only a restricted range of energy. Increasing the num-
ber of sweeps in an iteration does not seem to help. This
slowing down of dynamics seems to be an inherent problem
of this algorithm for such systems. Interestingly such prob-
lems do not arise for simulating systems with discrete energy
spectrum, e.g., Ising and Potts spin models. To overcome
these problems, we have proposed a few modifications to the
Wang-Landau algorithm and demonstrated that these modi-
fications help the basic algorithm to span larger regions of
the energy space systematically. We have followed the strat-
egy of calculating macroscopic properties from a production
run carried out with the density of states obtained from the
last of the Wang-Landau runs. The advantage of this strategy
is that we need not insist on a strictly flat histogram of en-
ergy. An approximately flat energy histogram is adequate
since the macroscopic properties are calculated by unweight-
ing and reweighting of the microstates of the g ensemble. We
have modified the Wang-Landau algorithm, details of which
have been described in the paper. It is these modifications
that have made possible simulation of the liquid crystalline
system in which a spin is continuously orientable resulting in
a continuous energy spectrum. We show that with the modi-
fications of the Wang-Landau algorithm the macroscopic
properties of bulk liquid crystalline system can be calculated
with a good degree of accuracy and with vastly improved

FIG. 5. Microcanonical entropy �i=log gi as a function of di-
mensionless energy at the end of successive outer iterations starting
from the inner most curve to the outer most. The data correspond to
L=12 and are plotted on a log-linear curve. The shape of the curve
will correspond to that of � employed in the simulation program.
The logarithm of the outermost curve is taken as the input for a long
production run which generates a g ensemble. Note that almost the
entire energy range is spanned.

FIG. 6. The transition temperature �measured in units of dimen-
sionless energy, with kB=1�, versus 1/L3. The top line with symbol
� corresponds to TNI obtained from fourth cumulant of Binder; the
middle line with symbol � corresponds to TNI obtained from the
orientational susceptibility and the bottom line corresponds to the
TNI obtained from the specific heat. The value of TNI in the limit
L→� is given by 1.1284 from finite size scaling of specific heat
data, 1.1299 from data on susceptibility and 1.1211 from data on
Binder’s fourth cumulant of energy.
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temperature resolution. This opens up the possibility of ex-
ploiting the full power of the �non-Boltzmann� Wang-Landau
Monte Carlo techniques to simulate several complex phe-
nomena in liquid crystalline systems. Examples of such
problems include phase transition in thin films deposited on
substrates with complex geometry, study of polymer dis-
persed liquid crystals �PDLC� and effect of disorder and con-
finement on the nematic-isotropic phase transition. Work on
these and related problems are in progress and will be re-
ported soon.
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APPENDIX

Let gi denote the number of microstates in the ith energy
bin and �i=log�gi� the corresponding microcanonical en-
tropy. We define �i=log��i�. In the program only the array

��i : i=1,9L3� is stored, updated, and eventually employed in
reweighting. All the required parameters like the acceptance
probability p, and unweighting and reweighting factor W are
calculated in terms of ��i : i=1,9L3�.

First we initialize ��i=log�2�∀ i=1,9L3�. Let the energy
of the current microstate belong to an energy bin c and the
trial microstate, to an energy bin t. The acceptance probabil-
ity of the trial state in the Wang-Landau algorithm is given
by

p = �1 if �t � �c

exp†− exp„�t + log�1 − exp�− ��t − �c���…‡ if �c � �t.
	

If the visited microstate has an energy falling in the say
ith bin, then �i is updated to �i+log�log�f�� where f is the
Wang-Landau factor for that run.

The unweighting and reweighting of microstates belong-
ing to the g ensemble are carried out as follows. Let C be the
microstate under consideration. Let the energy E=E�C� of
the microstate fall in the bin c. Let �c be the value of � in that
bin. The weight factor W�C� attached to C�g-ensemble is
given by

W�C� = �exp„+ exp��c + log�1 − exp�− 1���…, where 1 = �c − log��E� � 0,

exp„− exp�log��E� + log�1 − exp�− 2���…, where 2 = log��E� − �c � 0.
	

It is easily verified that the above weight factor is identical to the one given by Eq. �6� except that we have expressed it in
terms of ��i� instead of �gi�. The average of a macroscopic property O is calculated employing Eq. �7�.
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